In this work, we propose to use a methodology based on an identification and control scheme using recurrent high-order neural networks (RHONNs) trained online with an unscented Kalman filter (UKF) based algorithm. Initial parameters for the UKF are selected employing two bio-inspired algorithms: Bat Algorithm (BA) and Grey Wolf Optimizer (GWO). The controller design includes sliding modes techniques for trajectory tracking of the 7 degrees of freedom (DOF) Mitsubishi PA10-7CE robotic arm.
A bio-inspired optimization approach for trajectory tracking of robotic arms.
05.12.2022
1208208 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Bio-inspired control of redundant robotic systems: Optimization approach
BASE | 2012
|GEO Robotic Servicer Trajectory Optimization
AIAA | 2016
|Advanced Robotic Arms in Space
AIAA | 2004
|