Crowd sensing, the use of everyday devices to collect and share data is paving the way for cost efficient real time data collection. Real time information can be rapidly collected and shared publicly using smart devices. Besides smart phones, smart vehicles have also shown great promise for crowd sensing. In contrast to mobile crowd sensing, vehicles possess powerful on board sensors, powerful processing ability, and greater mobility. In this paper, we propose an active crowd sensing system to improve sensor data coverage. Unlike traditional approaches, we modify the planned route of participants rather than passively utilizing existing routes. To solve this problem, our system consist of two algorithms; a distributed route generator algorithm based on partial information and a centralized route selection algorithm with full information. In it, each vehicle has the responsibility of generating multiple routes while the central server determines which route each participant should undertake. Through the use of SUMO simulation and TAPAS Cologne Large Scale Mobility Dataset, we show that our proposed approach delivers significant performance improvements compared to traditional approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Large Scale Active Vehicular Crowdsensing


    Beteiligte:
    Zhu, Xiru (Autor:in) / Samadh, Shabir Abdul (Autor:in) / Yu, Tzu-Yang (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    259381 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Incentivizing vehicular crowdsensing system for large scale smart city applications

    Xu, Susu / Chen, Xinlei / Pi, Xidong et al. | British Library Conference Proceedings | 2019


    Environmental Monitoring via Vehicular Crowdsensing

    Morselli, Flavio / Zabini, Flavio / Conti, Andrea | IEEE | 2018


    Dynamic parking maps from vehicular crowdsensing

    Bock, Fabian / Gottfried Wilhelm Leibniz Universität Hannover | TIBKAT | 2018


    Dynamic parking maps from vehicular crowdsensing

    Bock, Fabian / Gottfried Wilhelm Leibniz Universität Hannover | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2018


    Blockchain-Enabled Conditional Decentralized Vehicular Crowdsensing System

    Zhao, Pincan / Li, Changle / Fu, Yuchuan et al. | IEEE | 2022