Behavior prediction plays an essential role in both autonomous driving systems and Advanced Driver Assistance Systems (ADAS), since it enhances vehicle's awareness of the imminent hazards in the surrounding environment. Many existing lane change prediction models take as input lateral or angle information and make short-term (<5 seconds) maneuver predictions. In this study, we propose a longer-term (5~10 seconds) prediction model without any lateral or angle information. Three prediction models are introduced, including a logistic regression model, a multilayer perceptron (MLP) model, and a recurrent neural network (RNN) model, and their performances are compared by using the real-world NGSIM dataset. To properly label the trajectory data, this study proposes a new time-window labeling scheme by adding a time gap between positive and negative samples. Two approaches are also proposed to address the unstable prediction issue, where the aggressive approach propagates each positive prediction for certain seconds, while the conservative approach adopts a roll-window average to smooth the prediction. Evaluation results show that the developed prediction model is able to capture 75% of real lane change maneuvers with an average advanced prediction time of 8.05 seconds.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Long-Term Prediction of Lane Change Maneuver Through a Multilayer Perceptron


    Beteiligte:
    Shou, Zhenyu (Autor:in) / Wang, Ziran (Autor:in) / Han, Kyungtae (Autor:in) / Liu, Yongkang (Autor:in) / Tiwari, Prashant (Autor:in) / Di, Xuan (Autor:in)


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    742982 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LONG-TERM PREDICTION OF LANE CHANGE MANEUVER THROUGH A MULTILAYER PERCEPTRON

    Shou, Zhenyu / Wang, Ziran / Han, Kyungtae et al. | British Library Conference Proceedings | 2020


    Systems and methods for long-term prediction of lane change maneuver

    SHOU ZHENYU / WANG ZIRAN / HAN KYUNGTAE et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    SYSTEMS AND METHODS FOR LONG-TERM PREDICTION OF LANE CHANGE MANEUVER

    SHOU ZHENYU / WANG ZIRAN / HAN KYUNGTAE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    PERSONALIZED VEHICLE LANE CHANGE MANEUVER PREDICTION

    WANG ZIRAN / HAN KYUNGTAE / GUPTA ROHIT et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Surrounding vehicle's lane change maneuver inferences

    Chakravarthi, Bharatesh | ORKG Comparisons | 2023

    Freier Zugriff