Ubiquitous user-input contents on social media and online services have generated a tremendous amount of information. Such information has great potential applications in various areas such as events detection and text summarization. In this paper, a social media based traffic status monitoring system is established. The system is initiated by a transportation related keyword generation process. Then an association rules based iterative query expansion algorithm is applied to extract real time transportation related tweets for incident management purpose. We also confirm the feasibility of summarizing the redundant tweets to generate concise and comprehensible textual contents. Comparison results show that our query expansion method for tweets extraction outperforms the previous ones. Analysis and case studies further demonstrate the practical usefulness of our tweets summarization algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Steds: Social Media Based Transportation Event Detection with Text Summarization


    Beteiligte:
    Fu, Kaiqun (Autor:in) / Lu, Chang-Tien (Autor:in) / Nune, Rakesh (Autor:in) / Tao, Jason Xianding (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    641531 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Event Detection on Roads Using Perceptual Video Summarization

    Thomas, Sinnu Susan / Gupta, Sumana / Subramanian, Venkatesh K. | IEEE | 2018


    A LSTM based Deep Learning Model for Text Summarization

    Vijaya Saraswathi, R / Chunchu, Ravi Varma / Kunchala, Sushma et al. | IEEE | 2022


    Deep recurrent neural networks for abstractive text summarization

    Klönne, Marie | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2018

    Freier Zugriff


    A Review on Various Techniques of Automatic Text Summarization

    Gupta, Aaryan / Rahul / Khatri, Inder et al. | IEEE | 2020