This paper addresses a computationally efficient approach to localization and mapping in an indoor parking garage in the context of simultaneous localization and mapping. A parameterized map-building approach is introduced and implemented to represent the surrounding structures using a small number of geometric parameters. These parameters are obtained from horizontally and vertically ordered 3D LIDAR measurements and incorporated into an online filter to simultaneously estimate the map parameters and localize the vehicle. This approach enables the high-precision navigation and memory-efficient map representation of an environment with man-made structures with no need of global positioning system or external position fixes. Driving experiments were performed in indoor parking garages to verify and demonstrate the performance of the proposed localization and mapping approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Precise Localization and Mapping in Indoor Parking Structures via Parameterized SLAM


    Beteiligte:
    Han, Jungwook (Autor:in) / Kim, Jinwhan (Autor:in) / Shim, David Hyunchul (Autor:in)


    Erscheinungsdatum :

    01.12.2019


    Format / Umfang :

    5894274 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vision-based Semantic Mapping and Localization for Autonomous Indoor Parking

    Huang, Yewei / Zhao, Junqiao / He, Xudong et al. | IEEE | 2018


    Microdrone-Based Indoor Mapping with Graph SLAM

    Samer Karam / Francesco Nex / Bhanu Teja Chidura et al. | DOAJ | 2022

    Freier Zugriff


    Multirobot C-SLAM: Simultaneous localization, control, and mapping

    Andrade-Cetto, Juan / Vidal-Calleja, Teresa A. / Sanfeliu, Alberto | BASE | 2005

    Freier Zugriff