This paper presents novel likelihood estimation to be used for particle filter based object tracking. The likelihood estimation is built upon cascade object detector trained with Gentle AdaBoost (GAB), in order to capture the probability of existence of object. Two strategies are adopted to construct the likelihood functions: probability-intra-stage (PIS) corresponding to real output of each weak classifier in the same stage, and probability-outer-stage (POS) corresponding to the depth reached in the cascade detector. Five kinds of likelihood functions are thus proposed based on the trained GAB detector. Our experiment shows the likelihood functions are able to characterize probabilistically the existence of object accurately, having much higher confidence value in object regions than that in background, and that the integral strategy of PIS and POS is the best choice.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Novel likelihood estimation technique based on boosting detector


    Beteiligte:
    Haijing Wang, (Autor:in) / Peihua Li, (Autor:in) / Tianwen Zhang, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    809204 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Novel Likelihood Estimation Technique Based on Boosting Detector

    Wang, H. / Li, P. / Zhang, T. | British Library Conference Proceedings | 2005



    An Image-Based Radar Detector Approaching Optimal Likelihood Ratio Detector

    Yang, Jianxuan / Yi, Jianxin / Wan, Xianrong et al. | IEEE | 2022



    Novel Adaptive Generalized Likelihood Ratio Detector with Application to Maneuvering Target Tracking

    Dany Dionne / Hannah Michalska / Yaakov Oshman et al. | AIAA | 2006