With the increase of vehicular applications, which aimed at improving traffic safety and driving experience, the limited computing resources of vehicles face the challenge of the real-time task requirements. Vehicular Edge Computing is an efficient way to augment the computational capabilities of vehicles. However, there are few researches have simultaneously considered the vehicle reliability, task prioritization, and timely scheduling of tasks. To bridge this gap and motivate vehicles to share computing resources, this paper proposed a multi-task offloading method. We formulated a revenue maximization problem and designed a control algorithm for this problem based on deep reinforcement learning. Meanwhile, we employed blockchain technology to ensure vehicle reliability. Simulation results validate the effectiveness of the proposed method, demonstrating a profits improvement of 67.98%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Task Computation Offloading based on Vehicular Blockchain


    Beteiligte:
    Meng, Zhen (Autor:in) / Liu, Chuyi (Autor:in) / Ren, Guanyu (Autor:in) / Wan, Jianxiong (Autor:in) / Li, Leixiao (Autor:in)


    Erscheinungsdatum :

    17.11.2023


    Format / Umfang :

    415838 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Blockchain-Based Secure Computation Offloading in Vehicular Networks

    Zheng, Xiao / Li, Mingchu / Chen, Yuanfang et al. | IEEE | 2021


    Cooperative Computation Offloading in Blockchain-Based Vehicular Edge Computing Networks

    Lang, Ping / Tian, Daxin / Duan, Xuting et al. | IEEE | 2022



    MCVCO: Multi-MEC Cooperative Vehicular Computation Offloading

    Liu, Jianhang / Xue, Kunlei / Miao, Qinghai et al. | IEEE | 2024