The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B providing erroneous data to the collision avoidance system, resulting in a potential collision. Hence, there is a need to use beacon interrogation to periodically validate ADS-B position reports. Various threshold-based validation strategies based on proximity and closure rate have been suggested to reduce channel congestion while maintaining the reliability of the collision avoidance system. This paper shows how to model the problem of deciding when to validate ADS-B reports as a partially observable Markov decision process, and it explains how to solve for the optimal validation strategy. The effectiveness of this approach is demonstrated in simulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Position validation strategies using partially observable Markov decision processes


    Beteiligte:


    Erscheinungsdatum :

    01.10.2011


    Format / Umfang :

    372147 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Position validation strategies using partially observable Markov decision processes

    Kochenderfer, Mykel J. / Shih, Kevin J. / Chryssanthacopoulos, James P. et al. | IEEE | 2011

    Freier Zugriff

    Signal Source Localization Using Partially Observable Markov Decision Processes

    Dressel, Louis K. / Kochenderfer, Mykel J. | AIAA | 2015


    Unmanned Aircraft Collision Avoidance Using Partially Observable Markov Decision Processes

    S. Temizer / M. J. Koehenderfer / L. P. Kaelbling et al. | NTIS | 2009



    Multirobot Navigation Using Partially Observable Markov Decision Processes with Belief-Based Rewards

    Tzikas, Alexandros E. / Knowles, Derek / Gao, Grace X. et al. | AIAA | 2023