This paper presents a hierarchical LiDAR simulation framework to address the challenges of accurately simulating LiDAR data in autonomous driving scenarios. The framework utilizes a homology mapping approach to integrate LiDAR responses hierarchically at three levels: the instantaneous power response, environmental optical channel response, and target reflection response of LiDAR. This allows for the dynamic coupling of LiDAR geometric and physical models with varying environmental parameters. By integrating an array of interactions intrinsic to the LiDAR system and its external environment, the proposed model can provide high-fidelity LiDAR point cloud simulations. The effectiveness of the simulated point clouds has been validated through extensive experiments using actual LiDAR data and detection algorithms trained on existing datasets. The experimental results show that the proposed method has the potential to improve the realism of LiDAR simulations and the accumulation of challenging perception data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Hierarchical LiDAR Simulation Framework Incorporating Physical Attenuation Response in Autonomous Driving Scenarios


    Beteiligte:
    Huang, Tengchao (Autor:in) / Song, Shuang (Autor:in) / Hu, Huosheng (Autor:in) / Gao, Yunlong (Autor:in) / Shao, Guifang (Autor:in) / Zhu, Qingyuan (Autor:in)


    Erscheinungsdatum :

    01.06.2024


    Format / Umfang :

    5613253 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    FILTERING AUTONOMOUS DRIVING SIMULATION SCENARIOS

    IYRA ALESSANDRO / RANGASWAMY VIVEK | Europäisches Patentamt | 2024

    Freier Zugriff

    Decision making framework for autonomous vehicles driving behavior in complex scenarios via hierarchical state machine

    Wang, Xuanyu / Qi, Xudong / Wang, Ping et al. | Springer Verlag | 2021

    Freier Zugriff

    AUTONOMOUS DRIVING LIDAR TECHNOLOGY

    WANG PANQU / WANG YU / ZHAO XIANGCHEN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Hierarchical Motion Planning for Autonomous Driving in Large-Scale Complex Scenarios

    Zhang, Songyi / Jian, Zhiqiang / Deng, Xiaodong et al. | IEEE | 2022


    DRIVING SCENARIOS FOR AUTONOMOUS VEHICLES

    RAMAMOORTHY SUBRAMANIAN / HAWASLY MAJD / EIRAS FRANCISCO et al. | Europäisches Patentamt | 2021

    Freier Zugriff