The inability of semantic segmentation methods to detect anomaly road obstacles not pre-defined in the datasets significantly hinders the safety-critical application in autonomous driving. The excessively complex anomaly detection approaches cannot accommodate the constraints on the inference time of intelligent vehicles. Inspired by the fact that humans have a natural instinct to be curious about unknown objects in a new environment, we propose a novel curiosity-driven attention mechanism (CuDAM) for anomaly road obstacles segmentation. CuDAM adopts the attention map as a new uncertainty judging criterion and utilizes it to improve the efficiency of the model. Specifically, CuDAM is composed of three parts: 1) an attention module for generating an attention map; 2) a reward mechanism for encouraging the network to focus its attention on uncertain regions; 3) an attention loss function for widening the distance between the attention values of deterministic and uncertain pixels. Different from previous approaches, CuDAM can improve both anomaly detection and semantic segmentation performance without complex operations and training, which makes it widely applicable to existing semantic segmentation models. The result of qualitative and quantitative experiments shows that such a straightforward approach achieves consistent significant improvements in anomaly detection performances with the various uncertainty estimation methods, demonstrating the broad applicability of CuDAM.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Curiosity-Driven Attention for Anomaly Road Obstacles Segmentation in Autonomous Driving


    Beteiligte:
    Ren, Xiangxuan (Autor:in) / Li, Min (Autor:in) / Li, Zhenhua (Autor:in) / Wu, Wentao (Autor:in) / Bai, Lin (Autor:in) / Zhang, Weidong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2023


    Format / Umfang :

    2519151 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Local Path Planning for Off-Road Autonomous Driving With Avoidance of Static Obstacles

    Chu, Keonyup / Lee, Minchae / Sunwoo, Myoungho | IEEE | 2012


    Group and combine obstacles for autonomous driving vehicles

    TAO JIAMING / LUO QI / ZHOU JINYUN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    DETERMINING DRIVING PATHS FOR AUTONOMOUS DRIVING THAT AVOID MOVING OBSTACLES

    XU KECHENG / MIAO JINGHAO | Europäisches Patentamt | 2019

    Freier Zugriff