In this paper, we are concerned with indoor localization based on multiple-antenna channel measurements. Indoor localization is an active area of research due to its great importance in many applications. We propose a hybrid algorithm which combines the benefits of two techniques, namely signal processing and machine learning. We validate our algorithm based on real measurements acquired from two practical setups. Our approach shows a very promising performance in the IEEE CTW 2019 - Positioning Algorithm Competition where the algorithm achieves an accuracy within RMSE values below 10 cm. We further build a setup in another indoor environment, where the algorithm still proves a very good performance compared to state-of-the art techniques used in indoor localization tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ensemble-Based Learning in Indoor Localization: A Hybrid Approach


    Beteiligte:
    Tewes, Simon (Autor:in) / Ahmad, Alaa Alameer (Autor:in) / Kakar, Jaber (Autor:in) / Thanthrige, Udaya Miriya (Autor:in) / Roth, Stefan (Autor:in) / Sezgin, Aydin (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    578262 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    LoRa Based Indoor Localization

    Merhej, Dany / Ahriz, Iness / Garcia, Samuel et al. | IEEE | 2022


    Hybrid Bayesian-based Indoor Localization Mechanisms for Distributed Antenna Systems

    Tercas, Leonardo / de Lima, Carlos H. M. / Saloranta, Jani et al. | IEEE | 2021