This paper presents a pedestrian detection method based on the multiple kernel framework. This approach enables us to select and combine different kinds of image representations. The combination is done through a linear combination of kernels, weighted according to the relevance of kernels. After having presented some descriptors and detailed the multiple kernel framework, we propose three different applications concerning combination of representations, automatic parameters setting and feature selection. We then show that the MKL framework enable us to apply a model selection and improve the performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Model selection in pedestrian detection using multiple kernel learning


    Beteiligte:


    Erscheinungsdatum :

    01.06.2007


    Format / Umfang :

    587486 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model Selection in Pedestrian Detection Using Multiple Kernel Learning

    Suard, F. / Rakotomamonjy, A. / Bensrhair, A. et al. | British Library Conference Proceedings | 2007


    Pedestrian detection using HOG-based block selection

    Minsung Kang / Young Chul Lim | IEEE | 2014


    Driving recorder based on-road pedestrian tracking using visual SLAM and Constrained Multiple-Kernel

    Kuan-Hui Lee / Hwang, Jenq-Neng / Okapal, Greg et al. | IEEE | 2014



    Sparse kernel learning-based feature selection for anomaly detection

    Zhimin Peng / Gurram, Prudhvi / Heesung Kwon et al. | IEEE | 2015