Facial expression recognition can be divided into three steps: face detection, expression feature extraction and expression categorization. Facial expression feature extraction and categorization are the most key issue. To address this issue, we propose a method to combine local binary pattern (LBP) and embedded hidden markov model (EHMM), which is the key contribution of this paper. This paper first gives an introduction about facial expression recognition and then describes EHMM and LBP. Finally, we give out the LBP-EHMM method in facial expression recognition, and perform an experiment to obtain a comparison between LBP feature and discrete cosine transform (DCT) feature.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Facial Expression Recognition Based on LBP-EHMM


    Beteiligte:
    Cao, Jianqiang (Autor:in) / Tong, Can (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    367321 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fuzzy Based Facial Expression Recognition

    Khanam, Assia / Shafiq, M. Zubair / Akram, M. Usman | IEEE | 2008


    Facial expression recognition based on anatomy

    Taner Eskil, M. / Benli, K. S. | British Library Online Contents | 2014


    Facial expression recognition based on local binary patterns

    Feng, X. / Pietikäinen, M. / Hadid, A. | British Library Online Contents | 2007


    Facial Expression Recognition System using Case Based Reasoning

    Khanum, Assia / Shafiq, Muhammad | IEEE | 2006


    Recognition of 3D facial expression dynamics

    Sandbach, G. / Zafeiriou, S. / Pantic, M. et al. | British Library Online Contents | 2012