Classification problems abundantly arise in many computer vision tasks eing of supervised, semi-supervised or unsupervised nature. Even when class labels are not available, a user still might favor certain grouping solutions over others. This bias can be expressed either by providing a clustering criterion or cost function and, in addition to that, by specifying pairwise constraints on the assignment of objects to classes. In this work, we discuss a unifying formulation for labelled and unlabelled data that can incorporate constrained data for model fitting. Our approach models the constraint information by the maximum entropy principle. This modeling strategy allows us (i) to handle constraint violations and soft constraints, and, at the same time, (ii) to speed up the optimization process. Experimental results on face classification and image segmentation indicates that the proposed algorithm is computationally efficient and generates superior groupings when compared with alternative techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning with constrained and unlabelled data


    Beteiligte:
    Lange, T. (Autor:in) / Law, M.H.C. (Autor:in) / Jain, A.K. (Autor:in) / Buhmann, J.M. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    281650 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Bootstrapping SVM Active Learning by Incorporating Unlabelled Images for Image Retrieval

    Wang, L. / Chan, K. / Zhang, Z. et al. | British Library Conference Proceedings | 2003


    New Unlabelled Process Oils for the Tyre and Rubber Industry

    Wadie, J. | British Library Conference Proceedings | 1999



    Diffeomorphic Matching of Distributions: A New Approach for Unlabelled Point-Sets and Sub-Manifolds Matching

    Glaunes, J. / Trouve, A. / Younes, L. et al. | British Library Conference Proceedings | 2004