In this paper, we consider an adaptive grouped physical layer multicasting for large-scale multi-antenna wireless systems in which a set of users are divided into several groups and each user group are assigned with a unique beamforming vector for multicast transmissions on the orthogonal resources. Based on the adaptive grouped multicast framework, we consider the joint design of user grouping and multicast beamforming adapted to the user channels. Two design objectives are studied, i.e., the average-rate maximization and the max-min fairness. We propose an iterative user grouping and beamforming design method for both optimization objectives. For iterative user grouping, we present a method for selecting better initial grouping centers. Moreover, to overcome the issue of converging to a local optimum for the iterative approach, we propose a novel enhancement scheme via user grouping perturbation, which performs very close to the exhaustive grouping search. Simulation results demonstrate the efficacy of the proposed designs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Grouped Physical Layer Multicast and Beamforming for Massive MIMO


    Beteiligte:
    Yue, Guosen (Autor:in) / Qi, Xiao-Feng (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    941519 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Virtual Massive MIMO Beamforming Gains for 5G User Terminals

    Amin, Muhammad Bilal / Zirwas, Wolfgang / Haardt, Martin | IEEE | 2016


    Generalizing Hybrid Beamforming Solutions for Massive MIMO Systems

    Alarfaj, Mohammed / Liu, Huaping | IEEE | 2017


    Robust Non-Coherent Beamforming for FDD Downlink Massive MIMO

    Rottenberg, Francois / Lee, Ming-Chun / Choi, Thomas et al. | IEEE | 2020


    Hybrid Beamforming for Broadband Millimeter Wave Massive MIMO Systems

    Chen, Rui / Xu, Hui / Li, Changle et al. | IEEE | 2018