In this paper, we propose to fuse the LIDAR and monocular image in the framework of conditional random field to detect the road robustly in challenging scenarios. LIDAR points are aligned with pixels in image by cross calibration. Then boosted decision tree based classifiers are trained for image and point cloud respectively. The scores of the two kinds of classifiers are treated as the unary potentials of the corresponding pixel nodes of the random field. The fused conditional random field can be solved efficiently with graph cut. Extensive experiments tested on KITTI-Road benchmark show that our method reaches the state-of-the-art.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CRF based road detection with multi-sensor fusion


    Beteiligte:
    Xiao, Liang (Autor:in) / Dai, Bin (Autor:in) / Liu, Daxue (Autor:in) / Hu, Tingbo (Autor:in) / Wu, Tao (Autor:in)


    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    587381 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Road surface condition detection with multi-scale fusion

    TONG WEI / ZHAO QINGRONG / LITKOUHI BAKHTIAR B et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    ROAD SURFACE CONDITION DETECTION WITH MULTI-SCALE FUSION

    TONG WEI / ZHAO QINGRONG / LITKOUHI BAKHTIAR B et al. | Europäisches Patentamt | 2017

    Freier Zugriff

    Multi-sensor fusion method for road condition measurement

    PENG SHASHA / WANG HONGGANG / CHENG HUASHAN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    AEB control method based on multi-sensor road adhesion coefficient fusion

    ZHU BING / ZHAO NANNAN / XUE JINGWEI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    FUSION-BASED WET ROAD SURFACE DETECTION

    ZHAO QINGRONG / LITKOUHI BAKHTIAR B / ZHANG QI et al. | Europäisches Patentamt | 2018

    Freier Zugriff