This article presents a computationally efficient, fixed complexity algorithm for estimating the angle of arrival of a radio frequency signal that impinges on a sparse linear array of sensors. The likelihood function for the bearing estimation problem is reduced to an inhomogeneous Diophantine approximation problem involving an unknown set of integer multiples of $2\pi$. In solving for the integers, we propose a modification to the Cassels algorithm and generate an approximate linearized maximum-likelihood (ML) estimate of bearing. The number of iterations for convergence of the algorithm can be precomputed, which allows the algorithm to have fixed computational complexity. The proposed technique applies to a large class of array configurations, allowing the array configuration to be chosen to optimize estimation performance rather than to suit the algorithm. The simulation results show the performance of the proposed bearing estimation algorithm to be very close to that of ML estimation, but with a significantly reduced computational overhead.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Practical Diophantine Approximation for Sparse Linear Array Direction Finding


    Beteiligte:


    Erscheinungsdatum :

    01.06.2021


    Format / Umfang :

    937785 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Direction finding in array geometry uncertainty

    Haber, F. / Shi, Q. | Tema Archiv | 1988


    On radar detection and direction finding using sparse arrays

    Athley, F. / Engdahl, C. / Sunnergren, P. | IEEE | 2007


    Direction Finding With Sparse Subarrays: Design, Algorithms, and Analysis

    Leite, Wesley S. / Lamare, Rodrigo C. de / Zakharov, Yuriy et al. | IEEE | 2024