Effective pre-processing of LiDAR point clouds, including ground removal and data cleaning, are crucial for object classification applications. Although popular for ground removal, the Random Sample Consensus (RANSAC) algorithm performs poorly on sloping roadways leading to poor classification performance. To address this limitation, we propose the 2D Spatial Constant False Alarm Rate CFAR technique which deals with lidar point cloud to effectively detect objects in sloping environments. When comparing the suggested technique to the RANSAC algorithm, it performs better in object classification with an overall precision of 0.63. This enhancement is validated using the VoD dataset, underscoring the efficiency of 2D-CFAR for precise ground removal in various road conditions inside Li-DAR point cloud processing. The 2D spatial CFAR contributes to more reliable LiDAR point cloud processing for object detection and classification.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    2D Spatial CFAR for LiDAR Point Cloud Ground Removal and Object Classification


    Beteiligte:
    Omri, Asma (Autor:in) / Mezghani, Mariem (Autor:in) / Rayeh, Jasser (Autor:in) / Sayahi, Sofiane (Autor:in) / Besbes, Hichem (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    6193160 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lidar Point Cloud Noise Removal Method and Device

    KIM KYUNG SOO / PARK JI IL / CHOI MIN SEONG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Lidar Point Cloud Noise Removal Method and Device

    Europäisches Patentamt | 2023

    Freier Zugriff

    OSGOS-CFAR ALGORITHM BASED ON CLASSIFICATION RECOGNITION

    Yu, C. / Zhang, Y. / Luo, J. et al. | TIBKAT | 2021


    YoloV8 Based Novel Approach for Object Detection on LiDAR Point Cloud

    Behera, Sriya / Anand, Bhaskar / P, Rajalakshmi | IEEE | 2024