In this paper, we present a new framework to detect and recognize entire lanes and symbolic marks on high resolution road images. The first part of the framework utilizes local threshold to overcome the limitations of fixed threshold determination in road marking segmentation. The second part of the framework handles false detections caused by nearby objects on the roads such as vehicles and buildings by re-moving the areas that are not related to road surface using semantic segmentation. It also boosts recognition performance with a cascaded classifier structure that combines CNN for symbolic mark recognition and SVM for lane verification. The proposed lane detection achieves average Fl-score of 0.96 and symbol recognition achieves average Fl-score of 0.91. The proposed method is expected to advance the vehicle industry; with a GPU device, the proposed method can easily be embedded in smart vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-Based Recognition of Road Regulation for Intelligent Vehicle


    Beteiligte:
    Lim, Kwangyong (Autor:in) / Hong, Yongwon (Autor:in) / Ki, Minsong (Autor:in) / Choi, Yeongwoo (Autor:in) / Byun, Hyeran (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    1537971 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    VISION-BASED RECOGNITION OF ROAD REGULATION FOR INTELLIGENT VEHICLE

    Lim, Kwangyong / Hong, Yongwon / Ki, Minsong et al. | British Library Conference Proceedings | 2018



    Vision for Intelligent Road Vehicles

    Graefe, V. / IEEE | British Library Conference Proceedings | 1993


    Intelligent regulation and control based on AI intelligent vehicle type recognition

    YU GEN'AN / CHEN LUYAO / LI ZENGYU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Vehicle Road Condition Perception System Based on Machine Vision and Intelligent Perception

    Yao, Jin / Feng, Jing / Liu, Yuzhou et al. | Springer Verlag | 2022