Climate-controlled cabins have for decades been standard in vehicles. Model Predictive Controllers (MPCs) have shown promising results in achieving temperature tracking in vehicle cabins and may improve upon model-free control performance. However, for the multi-zone climate control case, proper controller tuning is challenging, as externally, e.g., passenger-triggered changes in compressor setting and thus mass flow lead to degraded control performance. This paper presents a tuning method to automatically determine robust MPC parameters, as a function of the blower mass flow. Constrained contextual Bayesian optimization (BO) is used to derive policies minimizing a high-level cost function subject to constraints in a defined scenario. The proposed method leverages random disturbances and model-plant mismatch within the training episodes to generate controller parameters achieving robust disturbance rejection. The method contains a postprocessing step to achieve smooth policies that can be utilized in real-world applications. First, simulation results show that the mass flow-dependent policy outperforms a constant parametrization, while achieving the desired closed-loop behavior. Second, the robust tuning method greatly reduces worst-case overshoot and produces consistent closed-loop behavior under varying operating conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Cabin Climate MPC Parameter Tuning Using Constrained Contextual Bayesian Optimization (C-CMES)


    Beteiligte:
    Stenger, David (Autor:in) / Reuscher, Tim (Autor:in) / Vallery, Heike (Autor:in) / Abel, Dirk (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    2183013 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bayesian Global optimization-based parameter tuning for vehicle motion controllers

    WANG YU / LUO QI / XU JIAXUAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    BAYESIAN GLOBAL OPTIMIZATION-BASED PARAMETER TUNING FOR VEHICLE MOTION CONTROLLERS

    WANG YU / LUO QI / XU JIAXUAN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Heterogenous vehicle routing: comparing parameter tuning using genetic algorithm and bayesian optimization

    Ramasamy, Subramanian / Mondal, Md Safwan / Reddinger, Jean-Paul F. et al. | IEEE | 2022


    VEHICLE CABIN CLIMATE CONTROL SYSTEM

    HUIJBEN CORNELIS / DIJKEN DURANDUS KORNELIUS / GRAAF MARC JOHANNES MAGDALENA | Europäisches Patentamt | 2023

    Freier Zugriff

    VEHICLE CABIN CLIMATE CONTROL SYSTEM

    DIJKEN DURANDUS KORNELIUS / HUIJBEN CORNELIS / GRAAF MARC JOHANNES MAGDALENA | Europäisches Patentamt | 2023

    Freier Zugriff