This paper presents a real time vision-based human motion capturing and recognition system using two calibrated CCD cameras. We propose a simple but effective method to estimate the motion parameters (BAPs) of the human object by analyzing the vertical projection profile and the horizontal projection profile in each view to identify different arm and leg postures. With the identified postures, we can apply the Kalman filtering to capture the motion parameters (joint angles). Our method is divided into macro motion analysis and micro motion analysis. The former identifies certain well-defined postures and the latter traces the variation of joint angle or BAPs. In the experiments, we test 22 different arm and leg postures and show the errors of the estimated BAPs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time human motion capturing system


    Beteiligte:


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    344195 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-time Human Motion Capturing System

    Shen, B.-C. / Shih, H.-C. / Huang, C.-L. | British Library Conference Proceedings | 2005


    Low-cost real-time motion capturing system using inertial measurement units

    Salicone S. / Corbellini S. / Jetti H. V. et al. | BASE | 2022

    Freier Zugriff

    Human body motion parameters capturing using kinect

    Hsu, S. C. | British Library Online Contents | 2015


    Capturing Human Hand Motion in Image Sequences

    Lin, J. / Wu, Y. / Huang, T. S. | British Library Conference Proceedings | 2002


    Capturing human hand motion in image sequences

    Lin, J. / Ying Wu, / Huang, T.S. | IEEE | 2002