In this paper, we apply access class barring (ACB) scheme and sparse code multiple access (SCMA) technique to massive machine type communication devices (MTCDs) communications, and propose a resource allocation scheme to increase the number of successful accesses. The proposed scheme employs ACB to control the number of massive random access (RA) attempts during preamble transmission in physical random access channel (PRACH), then allocates SCMA codebook resource in physical uplink shared channel (PUSCH) to those MTCDs with successful preamble transmission for data transmission. We formulate a joint PRACH and PUSCH resource allocation optimization problem. Finally, we propose a detailed algorithm to solve the optimization problem and optimize the length of SCMA codeword to maximize the number of successful accesses. Simulation results show that the proposed scheme can increase the number of successful accesses even in the overload scenario.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Resource Allocation for Massive M2M Communications in SCMA Network


    Beteiligte:
    Xue, Tao (Autor:in) / Qiu, Lin (Autor:in) / Li, Xinmin (Autor:in)


    Erscheinungsdatum :

    01.09.2016


    Format / Umfang :

    227715 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Uplink Resource Allocation for Shared LTE and SCMA IoT Systems

    Balasubramanya, Naveen Mysore / Payami, Sohail / Sellathurai, Mathini | IEEE | 2018



    Downlink Power Allocation in SCMA with Finite-Alphabet Constraints

    Cui, Jingjing / Fan, Pingzhi / Lei, Xianfu et al. | IEEE | 2017


    Antenna-Resource-Based SCMA in Downlink Multiuser Transmission Systems

    Zhang, Yi-Peng / Yu, Qi-Yue / Liu, Zi-Jing et al. | IEEE | 2020


    Structured Random Codebook Design for GABP Iterative Detection in Massive SCMA

    Inagaki, Keisuke / Takahashi, Takumi / Ibi, Shinsuke et al. | IEEE | 2018