Today’s automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous environments. Based on cooperative modeling of other agents and Decoupled-UCT (a variant of MCTS), the algorithm evaluates the state-action-values of each agent in a cooperative and decentralized manner, explicitly modeling the interdependence of actions between traffic participants. Macro-actions allow for temporal extension over multiple time steps and increase the effective search depth requiring fewer iterations to plan over longer horizons. Without predefined policies for macro-actions, the algorithm simultaneously learns policies over and within macro-actions. The proposed method is evaluated under several conflict scenarios, showing that the algorithm can achieve effective cooperative planning with learned macro-actions in heterogeneous environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decentralized Cooperative Planning for Automated Vehicles with Hierarchical Monte Carlo Tree Search


    Beteiligte:
    Kurzer, Karl (Autor:in) / Zhou, Chenyang (Autor:in) / Marius Zollner, J. (Autor:in)


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    2581496 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DECENTRALIZED COOPERATIVE PLANNING FOR AUTOMATED VEHICLES WITH HIERARCHICAL MONTE CARLO TREE SEARCH

    Kurzer, Karl / Zhou, Chenyang / Zöllner, J. Marius | British Library Conference Proceedings | 2018


    Decentralized Cooperative Planning for Automated Vehicles with Continuous Monte Carlo Tree Search

    Kurzer, Karl / Engelhorn, Florian / Zollner, J. Marius | IEEE | 2018



    ACCELERATING COOPERATIVE PLANNING FOR AUTOMATED VEHICLES WITH LEARNED HEURISTICS AND MONTE CARLO TREE SEARCH

    Kurzer, Karl / Fechner, Marcus / Zöllner, J. Marius | British Library Conference Proceedings | 2020


    TACTICAL COOPERATIVE PLANNING FOR AUTONOMOUS HIGHWAY DRIVING USING MONTE-CARLO TREE SEARCH

    Lenz, David / Kessler, Tobias / Knoll, Alois | British Library Conference Proceedings | 2016