The safety of permanent magnet synchronous motors (PMSMs) relies heavily on the health status of their permanent magnets. Therefore, the magnetic flux linkage identification, as a key indicator of irreversible demagnetization, is crucial. Since the cross-coupling effect exacerbates the rank deficiency and coupling degree of (PMSMs), a magnetic flux linkage identification method based on split-step decoupling strategy is proposed to improve the identification accuracy. By analyzing the saliency consistency between the high-frequency (HF) and fundamental frequency (FF) models, the identification model is separated from the cross-coupling effect in the first-step decouple. In the second-step decouple, the working point offset injection (WOI) through the constant torque curve is used for the magnetic flux linkage identification. To enhance the identification accuracy, a composite filter is applied for the signal extraction and processing, and the dead time effect is also considered in the identification process. The experimental results confirm the effectiveness of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Magnetic Flux Linkage Estimation of PMSM Based on Split-Step Decoupling Strategy


    Beteiligte:
    Wang, Qiwei (Autor:in) / Wang, Gaolin (Autor:in) / Xiong, Xin (Autor:in) / Li, Qiyao (Autor:in) / Li, Binxing (Autor:in) / Zhang, Guoqiang (Autor:in) / Chang, Juntao (Autor:in) / Xu, Dianguo (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.02.2025


    Format / Umfang :

    2857772 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust Incremental Bayesian Learning Based Online Flux Linkage Estimation for PMSM Drives

    Huang, Kaide / Feng, Guodong / Lai, Chunyan et al. | IEEE | 2022



    Research on Flux Weakening Speed Control Strategy for PMSM

    Qian, Lei / Liu, Haizhen / He, Rui et al. | Springer Verlag | 2017