Matrix completion-assisted channel estimation is considered one of promising techniques in millimeter wave (mmWave) massive multiple input multiple output (MIMO) system by exploiting the low-rank property of channel matrix in the angle domain. However, existing channel estimation approaches are hard to achieve high accuracy due to the inevitable bias solution caused by nuclear norm based minimization (NNM). To address this problem, this paper proposes a novel matrix completion-assisted mmWave massive MIMO channel estimation method. We employ an effective and flexible rank function named joint weighted and truncated nuclear norm as relaxation of nuclear norm, and then construct an novel matrix completion model for channel estimation problem. Moreover, a popular framework of alternating direction method of multipliers (ADMM) is derived for minimization of the resulting optimization problem. Simulation results are provided to verify the proposed method that can flexibly and effectively improve the channel estimation accuracy with reliable convergence.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint Weighted and Truncated Nuclear Norm Minimization for Matrix Completion-Assisted mmWave MIMO Channel Estimation


    Beteiligte:
    Li, Yunyi (Autor:in) / Liu, Jianxun (Autor:in) / Chen, Chaoyang (Autor:in) / Gui, Guan (Autor:in) / Ohtsuki, Tomoaki (Autor:in) / Sari, Hikmet (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    757494 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    RIDNet Assisted cGAN Based Channel Estimation for One-Bit ADC mmWave MIMO Systems

    Karakoca, Erhan / Nayir, Hasan / Gorcin, Ali et al. | IEEE | 2023


    Transformer-based Predictive Channel Estimation for mmWave Massive MIMO Systems

    Ju, Hyungyu / Jeong, Seokhyun / Lee, Byungju et al. | IEEE | 2024