Autonomous driving is an emerging area of intelligent transport systems. It necessitates automatic detection, classification, and ranging of on-road obstacles. Current autonomous driving systems rely largely on LiDAR and radar units to gather information of distance to obstacles. LiDAR units are, in general, expensive. Alternatives such as stereo image processing for obtaining distance estimates are computationally intensive. Here, the authors explore the power of a deep-learning-based approach for range finding. The proposed approach is based on perception and requires only a low-cost image sensor. Estimating the range of objects from a monocular image captured by a passive cost-effective image sensor is, however, a challenging task. The authors propose an enhancement to classical convolutional neural networks based on addition of a range estimation layer for obtaining the distance to detected objects. The proposed strategy accomplishes object detection, classification and ranging simultaneously. The approach has been studied on the KITTI Vision Benchmark Suite, and experimental results indicate a detection speed of 61 fps, with mAP of 96.92% in recognition performance on an NVIDIA RTX 2080Ti GPU platform. Further, the proposed approach leads to an average error of only 0.915 m in range estimation which is quite acceptable in highway scenarios.


    Zugriff

    Zugriff über TIB


    Exportieren, teilen und zitieren



    DeepRange: deep‐learning‐based object detection and ranging in autonomous driving

    Parmar, Yashrajsinh / Natarajan, Sudha / Sobha, Gayathri | Wiley | 2019

    Freier Zugriff

    Deep Learning-based Road Object Detection for Collision Avoidance in Autonomous Driving

    Sharma, Teena / Chehri, Abdellah / Fofana, Issouf et al. | IEEE | 2024


    Deep Learning-Based Multi-scale Multi-object Detection and Classification for Autonomous Driving

    Fink, Maximilian / Liu, Ying / Engstle, Armin et al. | Springer Verlag | 2019


    Deep Learning for Autonomous Driving

    Mohamed, Khaled Salah | Springer Verlag | 2023


    Autonomous Driving Object Detection Platform

    Carabulea, Laurentiu / Pozna, Claudiu / Antonya, Csaba et al. | Springer Verlag | 2024