In this study, the authors improve the faster criterion in vehicle routing by extending the bi-delta distribution to the bi-normal distribution, which is a reasonable assumption for travel time on each road link. Based on this assumption, theoretical models are built for an arbitrary path and subsequently adopted to evaluate two candidate paths through probabilistic comparison. Experimental results demonstrate the bi-normal behaviour of link travel time in practice, and verify the faster criterion's superiority in determining the optimal path either on an artificial network with bi-normal distribution modelling link travel time or on a real road network with real traffic data. This study also validates that when the link number of one path is large, the probability density function of the whole path can be simplified by a normal distribution which approximates the sum of bi-normal distributions for each link.


    Zugriff

    Zugriff über TIB


    Exportieren, teilen und zitieren



    Titel :

    Finding the ‘faster’ path in vehicle routing


    Beteiligte:
    Guo, Jing (Autor:in) / Wu, Yaoxin (Autor:in) / Zhang, Xuexi (Autor:in) / Zhang, Le (Autor:in) / Chen, Wei (Autor:in) / Cao, Zhiguang (Autor:in) / Zhang, Lu (Autor:in) / Guo, Hongliang (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    17.10.2017


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Finding the ‘faster’ path in vehicle routing

    Guo, Jing / Wu, Yaoxin / Zhang, Xuexi et al. | Wiley | 2017

    Freier Zugriff



    Finding the Shortest Path in Stochastic Vehicle Routing: A Cardinality Minimization Approach

    Cao, Zhiguang / Guo, Hongliang / Zhang, Jie et al. | IEEE | 2016


    Towards Faster Vehicle Routing by Transferring Knowledge From Customer Representation

    Feng, Liang / Huang, Yuxiao / Tsang, Ivor W. et al. | IEEE | 2022