Aircraft design and control techniques rely on the proper modeling of the aircraft's equations of motion. Many of the variables used in these equations are aerodynamic coefficients which are obtained from scale models in wind tunnel tests. In order to model damaged aircraft, every aerodynamic coefficient must be determined for every possible damage mechanism in every flight condition. Designing a controller for a damaged aircraft is particularly burdensome because knowledge of the effect of each damage mechanism on the model is required before the controller can be designed. Also, a monitoring system must be employed to decide when and how much damage has occurred in order to re configure the controller. Recent advances in artificial intelligence have made parallel distributed processors (artificial neural networks) feasible. Modeled on the human brain, the artificial neural network's strength lies in its ability to generalize from a given model. This thesis examines the robustness of the artificial neural network as a model for damaged aircraft.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Artificial Neural Network Modeling of Damaged Aircraft


    Beteiligte:
    C. A. Brunger (Autor:in)

    Erscheinungsdatum :

    1994


    Format / Umfang :

    109 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Application of Neural Network to Reconfiguration of Damaged Aircraft

    Collins, D. J. / Dror, S. | British Library Conference Proceedings | 1997


    Modeling in Aircraft Battle-Damaged Repair System

    Huang, Shufeng / Hu, Zhixian / Wu, Yuanyuan | Tema Archiv | 2014



    Envelope Determination of Damaged Aircraft

    Koolstra, H. / Damveld, H. / Mulder, J.A. et al. | British Library Conference Proceedings | 2012


    Envelope Determination of Damaged Aircraft

    Koolstra, Herman / Damveld, Herman / Mulder, J. A. | AIAA | 2012