The objectives of the study were to develop a predictive algorithm for freeway congestion and to investigate and evaluate the current TSMC definition of freeway congestion or 'bottleneck' conditions. Data were collected along a section of the I-5 mainline northbound beginning at Downtown Station 108 and ending at Montlake Terrace Station 193 using two approaches: (1) time series modeling, and (2) pattern recognition. A pattern recognition approach was used to identify the best criteria for 'bottleneck' definition and also to identify the best criteria for predicting 'bottleneck' conditions. The time period for collection was 2:30 to 6:30 p.m. with a data time interval of 20 seconds.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Freeway Congestion Prediction


    Beteiligte:
    N. L. Nihan (Autor:in)

    Erscheinungsdatum :

    1995


    Format / Umfang :

    88 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch