Precise, smooth aerodynamic models are required for implementing adaptive, nonlinear control strategies. Accurate representations of aerodynamic coefficients can be generated for the complete flight envelope by combining computational neural network models with an Estimation-Before-Modeling paradigm for on-line training information. A novel method of incorporating first-partial-derivative information is employed to estimate the weights in individual feedforward neural networks for each aerodynamic coefficient. The method is demonstrated by generating a model of the normal force coefficient of a twin-jet transport aircraft from simulated flight data, and promising results are obtained.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Identification of Aerodynamic Coefficients Using Computational Neural Networks


    Beteiligte:
    D. J. Linse (Autor:in) / R. F. Stengel (Autor:in)

    Erscheinungsdatum :

    1992


    Format / Umfang :

    13 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch