A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Sequential design of discrete linear quadratic regulators via optimal root-locus techniques


    Beteiligte:
    Shieh, Leang S. (Autor:in) / Yates, Robert E. (Autor:in) / Ganesan, Sekar (Autor:in)


    Erscheinungsdatum :

    01.06.1989



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    SHIEH, LEANG S. / YATES, ROBERT E. / GANESAN, SEKAR | AIAA | 1989


    Optimal Control and Linear Quadratic Regulators

    Lavretsky, Eugene / Wise, Kevin A. | Springer Verlag | 2024


    Design of Linear Quadratic Regulators and Kalman Filters

    Lehtinen, B. / Geyser, L. | NTRS | 1986


    Modal weighting of linear quadratic regulators

    MACKISON, DONALD / WALL, EDWARD | AIAA | 1993


    Optimal Ship Maneuvering and Seakeeping by Linear Quadratic Gaussian (LQG) Regulators

    Sclavounos, P. / Thomas, B. / Ulusoy, T. et al. | British Library Conference Proceedings | 2007