This paper describes a reliable, general algorithm for modal decomposition in real arithmetic and its use in analyzing and synthesizing control logic for linear dynamic systems. The numerical difficulties are described associated with computing the Jordan canonical form when the system has repeated, or nearly repeated, eigenvalues. A new algorithm is described that satisfactorily solves these numerical difficulties. The relation and extension to related numerical analysis research are discussed to clarify the reliability of the techniques. Finally, its implementation as a practical modal decomposition method for efficiently computing the matrix exponential, transfer functions, and frequency response is also described.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Reliable algorithm for modal decomposition


    Beteiligte:


    Erscheinungsdatum :

    01.10.1990



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Reliable algorithm for modal decomposition

    WALKER, ROBERT A. / BRYSON, ARTHUR E. | AIAA | 1990


    Dominant modal decomposition method

    Dombovari, Zoltan | Online Contents | 2017


    Parametric Modal Decomposition of Dynamic Stall

    Coleman, Dustin G. / Thomas, Flint O. / Gordeyev, Stanislav et al. | AIAA | 2019


    Modal Decomposition of Wind-Tunnel Fluctuations

    Fahland, Georg / Elsner, Ferdinand / Weber, Kai et al. | TIBKAT | 2023


    Complete modal decomposition for optical waveguides

    Shapira, O. / Abouraddy, A.F. / Joannopoulos, J.D. et al. | IEEE | 2005