An image-based version of a computational model of human self-motion perception (developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center) has been generated and tested. The research included in the grant proposal sought to extend the utility of the self-motion model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. The model can now be tested with video input sequences (including computer generated imagery) which enables simulation of human self-motion estimation in a variety of applied settings.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Self-Motion and Depth Estimation from Image Sequences


    Beteiligte:
    Perrone, John (Autor:in)

    Erscheinungsdatum :

    02.07.1999


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    3D structure and motion estimation from 2D image sequences

    Tan, T. N. / Baker, K. D. / Sullivan, G. D. | British Library Online Contents | 1993


    Recursive Estimation of Camera Motion from Uncalibrated Image Sequences

    Soatto, S. / Perona, P. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Motion estimation in image sequences for traffic applications

    Leeuwen, M.B. van / Groen, F.C.A. | Tema Archiv | 2000


    Integrated segmentation and depth ordering of motion layers in image sequences

    Tweed, D. S. / Calway, A. D. | British Library Online Contents | 2002


    Robust Motion Estimation for Calibrated Cameras from Monocular Image Sequences

    Wagner, R. / Liu, F. / Donner, K. | British Library Online Contents | 1999