The NASA Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program is developing a Synthetic Aperture Radar (SAR) for ground measurements. A key element for the success of this program is a Platform Precision Autopilot (PPA). An interim vehicle (NASA C-20AJGlll) was selected to carry the radar pod and develop the PPA. The PPA interfaces with the C- 20AIG Ill aircraft by imitating the output of an Instrument Landing System (ILS) approach. This technique retains the safeguards in the aircraft's autopilot. The PPA entered initial flight testing in early 2007. The PPA uses a Kalman filter to generate a real-time position solution with information from the C-20AIGIII and a real-time differential GPS unit designed by JPL. The real-time navigation solution is used to compute commands (Guidance and Control subsystems) which in turn drive two modified ILS testers. The ILS tester units produce modulated RF signals fed to the onboard navigation receiver. These correction signals allow the C-20NGIII autopilot to fly a simulated ILS approach that meets the PPA requirements for UAVSAR applications. The PPA requirement is to make repeat pass flights within a ten meter tube over a 200 kilometer course in conditions of cairn to light turbulence. Flight test results are expected to be available at the time of the NASA Science Technology Conference 2007
C-20A/GIII Precision Autopilot Development in Support of NASA's UAVSAR Program
2007 NASA Science Technology Conference ; 2007 ; Adelphia, MD, United States
19.06.2007
Aufsatz (Konferenz)
Keine Angabe
Englisch