Terrain Relative Navigation methods require surface feature detectors to gain information from images used to improve on-board state estimates. This paper presents the development of a crater detection method based on Machine Learning that can extract data from optical images with different crater shapes and sizes, under varying lighting conditions. This work includes an automated capability for generating labeled training data and iterative testing of the neural network-based crater detector. Preliminary results are included to quantify the detector’s accuracy compared to a known crater catalog, given a set of real lunar images from the Lunar Reconnaissance Orbiter.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Implementation of Machine Learning Methods for Crater-Based Navigation


    Beteiligte:
    Sofia G Catalan (Autor:in) / Brandon A. Jones (Autor:in) / James S McCabe (Autor:in)

    Kongress:

    Astrodynamics Specialist Conference ; 2021 ; Big Sky, MT, US


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Crater-Based Navigation and Timing (CNT)

    Brandon Jones / Renato Zanetti | NTRS


    Deep Learning Crater Detection for Lunar Terrain Relative Navigation

    Downes, Lena / Steiner, Ted J. / How, Jonathan P. | AIAA | 2020


    DEEP LEARNING CRATER DETECTION FOR LUNAR TERRAIN RELATIVE NAVIGATION

    Downes, Lena / Steiner, Ted J. / How, Jonathan P. | TIBKAT | 2020


    A Deep Learning-based Crater Detector for Autonomous Vision-Based Spacecraft Navigation

    Del Prete, Roberto / Saveriano, Alfonso / Renga, Alfredo | IEEE | 2022


    Performance Assessment of Crater-Based Navigation for Autonomous Moon Landing

    Hamel, Jean-François / Garant, Alexis / Godin, Cédric et al. | AIAA | 2025