The development of sustainable mobility solutions calls for significant advances in travel demand data collection beyond the long-term static planning data usually available at planning agencies. This paper proposes a combined clustering, regression, and gravity model to estimate an origin-destination (OD) matrix for non-commuting trips based on Foursquare user check-in data in the Chicago urban area. The estimated OD matrix is found to be similar to the ground-truth OD matrix obtained from CMAP (Chicago Metropolitan Agency for Planning). The potential applications for generating day-of-the-week and dynamic bihourly OD patterns from Foursquare data are also illustrated.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Origin-Destination Estimation for Non-Commuting Trips Using Location-Based Social Networking Data




    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.80 / 55.80 Verkehrswesen, Transportwesen: Allgemeines