This paper presents a novel unambiguous estimation technique of high-order BOC signals, dubbed the Double Optimization Multi-correlator-based Estimator (DOME). The DOME is a robust alternative to other unambiguous BOC estimation techniques found in the literature, being able to operate in harsh propagation conditions typical of urban environments, while fully exploiting the BOC signal properties. The approach followed consists of the solution of two parallel and dependent optimization problems in which N samples of the correlation function are exploited, solving the ambiguity problem at the same time that the high-order BOC accuracy is preserved. The preliminary performance assessment of the DOME in both controlled and realistic propagation conditions is presented, demonstrating the robustness and accuracy of the approach proposed. Copyright © 2016 Institute of Navigation


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Unambiguous Estimation of High-Order BOC Signals: The DOME Approach



    Erschienen in:

    Navigation ; 63 , 4 ; 511


    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    53.84 Ortungstechnik, Radartechnik / 55.86 Schiffsverkehr, Schifffahrt / 55.54 Flugführung
    Lokalklassifikation TIB:    770/5680/7035



    Robust unambiguous estimation of high‐order boc signals: the dome approach

    Garcia‐Molina, J.A. / Navarro‐Gallardo, M. / Lopez‐Risueño, G. et al. | British Library Online Contents | 2016


    Collective Unambiguous Positioning With High-Order BOC Signals

    Antonio Garcia-Molina, Jose / Antonio Fernandez-Rubio, Juan | IEEE | 2019


    A Robust Technique for Unambiguous BOC Tracking

    Wendel, J. / Schubert, F. M. / Hager, S. | British Library Online Contents | 2014


    Automotive Radar Maximum Unambiguous Velocity Extension Via High-Order Phase Components

    Dikshtein, Michael / Longman, Oren / Villeval, Shahar et al. | IEEE | 2022