Designers often search for new solutions by iteratively adapting a current design. By engaging in this search, designers not only improve solution quality but also begin to learn what operational patterns might improve the solution in future iterations. Previous work in psychology has demonstrated that humans can fluently and adeptly learn short operational sequences that aid problem-solving. This paper explores how designers learn and employ sequences within the realm of engineering design. Specifically, this work analyzes behavioral patterns in two human studies in which participants solved configuration design problems. Behavioral data from the two studies are first analyzed using Markov chains to determine how much representation complexity is necessary to quantify the sequential patterns that designers employ during solving. It is discovered that first-order Markov chains are capable of accurately representing designers' sequences. Next, the ability to learn first-order sequences is implemented in an agent-based modeling framework to assess the performance implications of sequence-learning abilities. These computational studies confirm the assumption that the ability to learn sequences is beneficial to designers.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Capturing Human Sequence-Learning Abilities in Configuration Design Tasks Through Markov Chains



    Erschienen in:

    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    50.15 Konstruktionslehre / 52.15 Maschinenelemente, Maschinenbaugruppen / 52.20 Antriebstechnik, Getriebelehre
    Lokalklassifikation TIB:    770/5315/5330




    Validating Cognitive Human Models for Multiple Target Search Tasks with Variable Length Markov ''Chains

    Winkelholz, Carsten / Schlick, Christopher / Motz, Florian | SAE Technical Papers | 2003


    Validating Cognitive Human Models for Multiple Target Search Tasks with Variable Length Markov Chains

    Winkelholz, C. / Schlick, C. / Motz, F. et al. | British Library Conference Proceedings | 2003