This paper describes the effects of coolant-to-mainstream density ratio and specific heat capacity flux ratio (the product of blowing ratio and specific heat capacity ratio) on the overall cooling effectiveness of high pressure (HP) turbine vanes. Experimental measurements have been conducted at correct engine-matched conditions of Mach number, Reynolds number, turbulence intensity, and coolant-to-mainstream momentum flux ratio. Vanes tested were fully cooled production parts from an engine currently in service. A foreign gas mixture of SF6 and Ar was selected for injection as coolant in the facility so that density and blowing ratios were also matched to the engine situation. The isentropic exponent of the foreign gas mixture coincides with that of air. Full-coverage surface maps of overall cooling effectiveness were acquired by an infrared (IR) thermography technique at a range of mainstream-to-coolant temperature ratios. Measurements were subsequently scaled to engine conditions by employing a new theory based on the principle of superposition and a recovery and redistribution temperature demonstrated in previous papers. It is shown that the two aerodynamically matched situations of air- and foreign-gas-cooled experiments give virtually the same effectiveness trends and patterns. Actual levels differ, however, on account of specific heat capacity flux ratio differences. The effect is described and quantified by a one-dimensional analytical model of the vane wall. Differences in Biot number with respect to engine conditions are discussed as they also influence the scaling of turbine metal temperatures.
Effects of Coolant Density, Specific Heat Capacity, and Biot Number on Turbine Vane Cooling Effectiveness
Journal of turbomachinery ; 139 , 11
2017
Aufsatz (Zeitschrift)
Englisch
Biot Number Analogy for Design of Experiments in Turbine Cooling
Online Contents | 2015
|Heat Pipe Turbine Vane Cooling
SAE Technical Papers | 1992
|