The assimilation of discrete data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters, which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance (HDHB) method. The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on a pitch/plunge aerofoil and two Goland wing configurations. In all cases, significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their true deterministic values. Additionally, a comparison of two approaches to extract the true values from the posterior distributions is presented.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reducing parametric uncertainty in limit-cycle oscillation computational models


    Beteiligte:

    Erschienen in:

    The aeronautical journal ; 121 , 1241 ; 940


    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.50 Luftfahrzeugtechnik / 55.60 Raumfahrttechnik / 55.50 / 55.60
    Lokalklassifikation TIB:    275/7040