Abstract There are significant spatiotemporal correlations among the traffic flows of neighboring road sections in the road network. Correctly identifying such correlations makes an essential contribution for improving the accuracy of traffic flow prediction. Many efforts have been made by several researchers to solve this issue, but they assume that the spatiotemporal correlations among traffic flows are stationary in both time and space, i.e., the degrees to which traffic flows affect each other are fixed. In this study, we propose a clustering based traffic flow prediction method that considers the dynamic nature of spatiotemporal correlations. In order to express the short-term dependence between the target road section and neighboring ones, the spatiotemporal correlation matrices are introduced. The historical traffic data are divided into several clusters according to the similarity between spatiotemporal correlation matrices. The spatiotemporal correlation analysis and the predictor selection based on the mutual information are performed in each cluster, and the multiple prediction models are trained separately. A prediction model corresponding to the cluster to which the current traffic pattern belongs is selected to output the prediction result. Experimental results on real traffic data show that the proposed method achieves good prediction accuracy by distinguishing the heterogeneity of spatiotemporal correlations among the traffic flows.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A clustering based traffic flow prediction method with dynamic spatiotemporal correlation analysis


    Beteiligte:
    Ryu, Unsok (Autor:in) / Wang, Jian (Autor:in) / Pak, Unjin (Autor:in) / Kwak, Sonil (Autor:in) / Ri, Kwangchol (Autor:in) / Jang, Junhyok (Autor:in) / Sok, Kyongjin (Autor:in)

    Erschienen in:

    Transportation ; 49 , 3 ; 951-988


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.80$jVerkehrswesen$jTransportwesen: Allgemeines / 55.80 Verkehrswesen, Transportwesen: Allgemeines / 74.75$jVerkehrsplanung$jVerkehrspolitik / 74.75 Verkehrsplanung, Verkehrspolitik



    METHOD FOR SHORT-TERM TRAFFIC FLOW PREDICTION BASED ON SPATIOTEMPORAL CORRELATION

    QI YONG / XIONG TING / ZHANG WEIBIN et al. | Europäisches Patentamt | 2020

    Freier Zugriff


    SPATIOTEMPORAL TRAFFIC FLOW PREDICTION SYSTEM

    KIM EUN YI | Europäisches Patentamt | 2016

    Freier Zugriff

    Traffic flow prediction method based on dynamic space-time correlation

    ZHANG XU / ZHANG LANGWEN / XIE WEI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Spatiotemporal Traffic Flow Prediction with KNN and LSTM

    Xianglong Luo / Danyang Li / Yu Yang et al. | DOAJ | 2019

    Freier Zugriff