Abstract This paper provides a systematic literature review of current studies between January 2015 and January 2022 on user trust in artificial intelligence (AI) that has been conducted from different perspectives. Such a review and analysis leads to the identification of the various components, influencing factors, and outcomes of users’ trust in AI. Based on the findings, a comprehensive conceptual framework is proposed for a better understanding of users’ trust in AI. This framework can further be tested and validated in various contexts for enhancing our knowledge of users’ trust in AI. This study also provides potential future research avenues. From a practical perspective, it helps AI-supported service providers comprehend the concept of user trust from different perspectives. The findings highlight the importance of building trust based on different facets to facilitate positive cognitive, affective, and behavioral changes among the users.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    User trust in artificial intelligence: A comprehensive conceptual framework


    Beteiligte:
    Yang, Rongbin (Autor:in) / Wibowo, Santoso (Autor:in)

    Erschienen in:

    Electronic Markets ; 32 , 4 ; 2053-2077


    Erscheinungsdatum :

    2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    BKL:    85.40 Marketing / 83.72 Verkehrswirtschaft



    Trust in artificial intelligence: From a Foundational Trust Framework to emerging research opportunities

    Lukyanenko, Roman / Maass, Wolfgang / Storey, Veda C. | Online Contents | 2022



    Trust, Ethics, Consciousness, and Artificial Intelligence

    O'Grady, Katherine L. / Harbour, Steven D. / Abballe, Ashlie R. et al. | IEEE | 2022


    An Explainable Artificial Intelligence (xAI) Framework for Improving Trust in Automated ATM Tools

    Hernandez, Carolina Sanchez / Ayo, Samuel / Panagiotakopoulos, Dimitrios | IEEE | 2021


    Conceptual Framework for User Based RPM

    Girgenti, Andrea / Pacifici, Beniamino / Parretti, Chiara et al. | TIBKAT | 2017