Abstract The paper presents the possibility of using neural networks in the detection of stator and rotor electrical faults of induction motors. Fault detection and identification are based on the analysis of symptoms obtained from the fast Fourier transform of the voltage induced by an axial flux in a measurement coil. Neural network teaching and testing were performed in a MATLAB–Simulink environment. The effectiveness of various neural network structures to detect damage, its type (rotor or stator damage) and damage levels (number of rotor bars cracked or stator winding shorted circuits) is presented.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of Neural Networks and Axial Flux for the Detection of Stator and Rotor Faults of an Induction Motor


    Beteiligte:
    Ewert, Paweł (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2019




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Klassifikation :

    BKL:    53.35 Stromrichter, Transformatoren / 53.35$jStromrichter$jTransformatoren / 53.33 Elektrische Maschinen und Antriebe / 53.33$jElektrische Maschinen und Antriebe



    Diagnostic System for Induction Motor Stator Winding Faults Based on Axial Flux

    Wolkiewicz, Marcin / Skowron, Maciej | Online Contents | 2017


    Control Strategy for Self-bearing Dual Stator Solid Rotor Axial Flux Induction Motor

    Hong, Cencen / Sun, Quan / Li, Yongjin et al. | IEEE | 2022



    AXIAL-FLUX MOTOR HAVING DOUBLE STATOR ASSEMBLIES AND SINGLE ROTOR ASSEMBLY AND UAV MOTOR DEVICE

    CHANG CHIN-HONG / HSU FU-CHUAN / HUA JUI-MING et al. | Europäisches Patentamt | 2025

    Freier Zugriff