This research proposes the use of Artificial Neural Networks (ANN) to predict the road input for road load data generation for variants of a vehicle as vehicle parameters are modified. This is important to the design engineers while the vehicle variant is still in the initial stages of development, hence no prototypes are available and accurate proving ground data acquisition is not possible. ANNs are, with adequate training, capable of representing the complex relationships between inputs and outputs. This research explores the implementation of the ANN to predict road input for vehicle variants using a quarter vehicle test rig. The training and testing data for this research are collected from a validated quarter vehicle model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Artificial Road Load Generation Using Artificial Neural Networks


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2015 World Congress & Exhibition ; 2015



    Erscheinungsdatum :

    14.04.2015




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Artificial road load generation using artificial neural networks

    Ogunoiki,A. / Olatunbosun,O. / Univ.of Birmingham,GB | Kraftfahrwesen | 2015


    Artificial Road Load Generation Using Artificial Neural Networks

    Ogunoiki, Adebola / Olatunbosun, Oluremi | British Library Conference Proceedings | 2015


    Road Traffic Prediction Using Artificial Neural Networks

    Loumiotis, Ioannis / Demestichas, Konstantinos / Adamopoulou, Evgenia et al. | IEEE | 2018


    FORECASTING ROAD TRANSPORT ENERGY CONSUMPTION USING ARTIFICIAL NEURAL NETWORKS

    La Franca, L. / Zito, P. | British Library Conference Proceedings | 2005


    Aircraft Transonic Buffet Load Prediction using Artificial Neural Networks

    Candon, Michael J. / Levinski, Oleg / Altaf, Alaman et al. | AIAA | 2019