As NASA is preparing to extend man's reach into space, it is expected that astronauts will be required to spend more and more time exposed to the hazards of performing Extra-Vehicular Activity (EVA). One of these hazards includes the risk of the space suit bladder being penetrated by hypervelocity micrometeoroid and orbital debris (MMOD) particles. Therefore, it has become increasingly important to investigate new ways to improve the protectiveness of the current Extravehicular Mobility Unit (EMU) against MMOD penetration.ILC Dover conducted a NASA funded study into identifying methods of improving the current EMU protection. The first part of this evaluation focused on identifying how to increase the EMU shielding, selecting materials to accomplish this, and testing these materials to determine the best lay-up combinations to integrate into the current thermal micrometeoroid garment (TMG) design. Part of this study included using extensive hypervelocity testing to identify potential candidate materials. The last part of this study expanded on the previous results by conducting a more thorough investigation into the performance of the top three candidate lay-ups for micrometeor protection. The ability to manufacture the candidates into the current TMG and their effects on the torque of a mobility joint were the main focus points. This paper summarizes the findings of this study.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Micrometeoroid and Orbital Debris Enhancements of Shuttle Extravehicular Mobility Unit Thermal Micrometeoroid Garment


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Cadogan, David (Autor:in) / Graziosi, David (Autor:in) / Zetune, David (Autor:in) / Christiansen, Eric L. (Autor:in) / Ferl, Jinny (Autor:in) / Splawn, Keith (Autor:in) / Jones, Robert (Autor:in)

    Kongress:

    International Conference On Environmental Systems ; 2006



    Erscheinungsdatum :

    17.07.2006




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Extravehicular Activity Micrometeoroid and Orbital Debris Risk Assessment Methodology

    Hoffman, Kevin D. / Hyde, James L. / Christiansen, Eric L. et al. | NTRS | 2019


    Extravehicular Activity (EVA) Thermal Micrometeoroid Garment (TMG) Thermal Performance Study

    Paul, Heather L. / Iovine, John V. | SAE Technical Papers | 1996