Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Copula-Based Approach for Model Bias Characterization


    Weitere Titelangaben:

    Sae International Journal of Passenger Cars. Mechanical Systems
    Sae Int. J. Passeng. Cars - Mech. Syst


    Beteiligte:
    Hao, Pan (Autor:in) / Yang, Ren-Jye (Autor:in) / Fu, Yan (Autor:in) / Xi, Zhimin (Autor:in)

    Kongress:

    SAE 2014 World Congress & Exhibition ; 2014



    Erscheinungsdatum :

    01.04.2014


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    A Copula-Based Approach for Model Bias Characterization

    Xi, Z. / Hao, P. / Fu, Y. et al. | British Library Conference Proceedings | 2014


    An Adaptive Copula-Based Approach for Model Bias Characterization

    Pan, Hao / Yang, Ren-Jye / Xi, Zhimin | SAE Technical Papers | 2015


    An adaptive copula-based approach for model bias characterization

    Pan,H. / Xi,Z. / Yang,R.J. et al. | Kraftfahrwesen | 2015


    Multinomial Logit model based on Gumbel Copula

    Huamin, L. / Haijun, H. / Huiwen, W. | British Library Online Contents | 2009


    A Multivariate Copula-Based Macro-Level Crash Count Model

    Yasmin, Shamsunnahar / Momtaz, Salah Uddin / Nashad, Tammam et al. | Transportation Research Record | 2018