This paper presents a crankshaft speed fluctuation model based dynamic neural network misfire detection method to achieve high detection performance and compact network size. In this method, a dynamic neural network with output feedback is utilized to model an inverse system from the engine crankshaft speed signal to the firing event signal. The engine misfire detection is based on the output of the inverse system given the input of engine speed signal. Test results for a 4-cylinder engine show its promising capability of misfire detection even for the low sampling rate data under various engine operating conditions and misfire patterns.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Misfire Detection Using a Dynamic Neural Network with Output Feedback


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Lee, Anson (Autor:in) / Wu, Zhijian James (Autor:in)

    Kongress:

    International Congress & Exposition ; 1998



    Erscheinungsdatum :

    23.02.1998




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Misfire Detection Using a Dynamic Neural Network with Output Feedback

    Wu, Z. J. / Lee, A. / Society of Automotive Engineers | British Library Conference Proceedings | 1998


    Misfire detection using a dynamic neural network with output feedback

    Wu,Z.J. / Lee,W.A. / Chrysler,US | Kraftfahrwesen | 1998


    Detection of Engine Misfire events using an Artificial neural Network

    Nareid, H. / Lightowler, N. / Society of Automotive Engineers | British Library Conference Proceedings | 2004


    Misfire detection including confidence indicators using a hardware neural network

    Krikham,C. / Cambio,R. / Axeon,GB | Kraftfahrwesen | 2006


    Detection of engine misfire events using an artificial neural network

    nareid,H. / Lightowler,N. / Axeon,GB | Kraftfahrwesen | 2004