An accurate voltage prediction associated with uncertainty quantification is of great importance to predict the remaining useful life for proton exchange membrane fuel cell in automobile applications. This paper achieves the remaining useful life prediction using deep neural networks, with an emphasis on uncertainty quantification in voltage prognostics for proton exchange membrane fuel cell systems. The trend and pattern of voltage degradation data was investigated by using long-short term memory and the voltage prediction trend was represented with prediction interval. The experimental results show that the deep learning model with corresponding uncertainty techniques can achieve prediction root mean square error values within 0.02 and represent the voltage prediction with a prediction interval.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Uncertainty Quantification of Prognostic Techniques for Proton Exchange Membrane Fuel Cell


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Chen, Fengxiang (Autor:in) / Yang, Xin (Autor:in)

    Kongress:

    Vehicle Electrification and Powertrain Diversification Technology Forum Part II ; 2021



    Erscheinungsdatum :

    14.02.2022




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Deep Uncertainty Quantification of Prognostic Techniques for Proton Exchange Membrane Fuel Cell

    Yang, Xin / Chen, Fengxiang | British Library Conference Proceedings | 2022


    Deep Uncertainty Quantification of Prognostic Techniques for Proton Exchange Membrane Fuel Cell

    Yang, Xin / Chen, Fengxiang | British Library Conference Proceedings | 2022


    Prognostic methods for proton exchange membrane fuel cell under automotive load cycling: a review

    Jacome, Andres / Hissel, Daniel / Heiries, Vincent et al. | IET | 2020

    Freier Zugriff


    Prognostic methods for proton exchange membrane fuel cell under automotive load cycling: a review

    Jacome, Andres / Hissel, Daniel / Heiries, Vincent et al. | Wiley | 2020

    Freier Zugriff