An easy-to-use implementation of a Differential Evolution Based Stochastic Optimizer (DEBSO) for nonlinear, multi-modal problems is presented. Using two case studies, we demonstrate that DEBSO is (1) more effective and (2) less sensitive to user defined initial guess values, in finding the global optimum, as compared to that of a gradient based deterministic optimizer. Results from using DEBSO for construction of empirical catalyst maps from pulsator data and estimation of parameters in a diesel oxidation catalyst model are also presented. The effectiveness and efficiency of DEBSO has been compared to other evolution-based optimizers in Appendix A.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Parameter Estimation Algorithms for Nonlinear Aftertreatment Models


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2006 World Congress & Exhibition ; 2006



    Erscheinungsdatum :

    03.04.2006




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Real-time capable parameter tuning for exhaust gas aftertreatment models in automotive applications

    Schödel, Sebastian / Jungkunz, Thomas / Krolak, Radoslaw et al. | Tema Archiv | 2013


    AFTERTREATMENT COMPONENT CARTRIDGE FOR AN AFTERTREATMENT SYSTEM

    FRISCH PAUL T / CHRISTIANSON PETER / NIEDFELDT JOSHUA | Europäisches Patentamt | 2024

    Freier Zugriff

    Diesel aftertreatment

    International Fall Fuels and Lubricants Meeting and Exposition | TIBKAT | 2000