The Powertrain Analysis and Computational Environment (PACE) is a powertrain simulation tool that provides an advanced behavioral modeling capability for the powertrain subsystems of conventional or hybrid-electric vehicles. Due to its origins in Argonne National Lab’s Autonomie, PACE benefits from the reputation of Autonomie as a validated modeling tool capable of simulating the advanced hardware and control features of modern vehicle powertrains. However, unlike Autonomie that is developed and executed in Mathwork’s MATLAB/Simulink environment, PACE is developed in C++ and is targeted for High-Performance Computing (HPC) platforms. Indeed, PACE is used as one of several actors within a comprehensive ground vehicle co-simulation system (CRES-GV MERCURY): during a single MERCURY run, thousands of concurrent PACE instances interact with other high-performance, distributed MERCURY components. A proof-of-concept implementation of PACE, as applied to a conventional powertrain architecture, was presented at the SAE2016 conference. Since then, a C++ library of components implementing the functionality of the corresponding Simulink subsystems has been developed, followed by streamlining the process of the generation of the C++ code for a particular powertrain; the native Simulink XML representation of the architecture (components and their connectivity) is used for an automatic generation of the simulation workflow and thus effectively reproducing the functionality of the Autonomie models while making it compliant to MERCURY requirements. The resulting PACE models are rigorously verified and validated against results generated by Simulink runs. Furthermore, the whole process is largely automated, thus providing time savings when implementing new vehicle architectures.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Near Automatic Translation of Autonomie-Based Power Train Architectures for Multi-Physics Simulations Using High Performance Computing


    Weitere Titelangaben:

    Sae Int. J. Commer. Veh


    Beteiligte:
    Card, Angela (Autor:in) / Goodin, Christopher (Autor:in) / Henley, Gregory (Autor:in) / Doude, Matthew (Autor:in) / Mazzola, Michael S. (Autor:in) / Shurin, Scott (Autor:in) / Haupt, Tomasz (Autor:in)

    Kongress:

    WCX™ 17: SAE World Congress Experience ; 2017


    Erschienen in:

    Erscheinungsdatum :

    28.03.2017


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Near Automatic Translation of Autonomie-Based Power Train Architectures for Multi-Physics Simulations Using High Performance Computing

    Haupt, Tomasz / Henley, Gregory / Card, Angela et al. | British Library Conference Proceedings | 2017


    Powertrain Analysis and Computational Environment (PACE) for Multi-Physics Simulations Using High Performance Computing

    Haupt, Tomasz A. / Card, Angela E. / Doude, Matthew et al. | British Library Conference Proceedings | 2016


    Powertrain Analysis and Computational Environment (PACE) for Multi-Physics Simulations Using High Performance Computing

    Hufnagel, Alan / Card, Angela E. / Doude, Matthew et al. | SAE Technical Papers | 2016


    Train automatic control system based on cloud computing and train communication

    WANG WEI / CHEN WEIMIN | Europäisches Patentamt | 2021

    Freier Zugriff

    An object-oriented power network simulator for multi-train simulations

    Siu, L. K. / Goodman, C. J. / Wessex Institute of Technology | British Library Conference Proceedings | 1994